

Abstracts

Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals

L.N. Langley, M.D. Elkin, C. Edge, M.J. Wale, U. Gliese, X. Huang and A.J. Seeds. "Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals." 1999 Transactions on Microwave Theory and Techniques 47.7 (Jul. 1999, Part II [T-MTT] (Special Issue on Microwave and Millimeter-Wave Photonics)): 1257-1264.

In this paper, we present the first fully packaged semiconductor laser optical phase-locked loop (OPLL) microwave photonic transmitter. The transmitter is based on semiconductor lasers that are directly phase locked without the use of any other phase noise-reduction mechanisms. In this transmitter, the lasers have a free-running summed linewidth of 6 MHz and the OPLL has a feedback bandwidth of 70 MHz. A state-of-the-art performance is obtained, with a total phase-error variance of 0.05 rad^2 (1-GHz bandwidth) and a carrier phase-error variance of 7 rad^2 in a 15-MHz bandwidth. Carriers are generated in the range of 7-14 GHz. The OPLL transmitter has been fully packaged for practical use in field trials. This is the first time this type of transmitter has been fabricated in a packaged state which is a significant advance on the route to practical application.

[Return to main document.](#)

Click on title for a complete paper.